Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
Note: m and n will be at most 100.
Idea: Dynamic programming. The number of uniques paths from point (i,j) to (m-1, n-1) is path[i][j]= (obs[i][j]==1)? 0 : path[i+1][j]+path[i][j+1]. We can not go right (go down) from the last column (the last row). So the last column is path[i][n-1]=(obs[i][n-1]==1)? 0: path[i+1][n-1]. The same for last row.
Time: O(n^2) Space: O(n^2)
Code:
public class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if(obstacleGrid.length==0||obstacleGrid[0].length==0)
return 0;
int[][] obs=obstacleGrid;
int m=obs.length;
int n=obs[0].length;
int[][] path=new int[m][n];
path[m-1][n-1]=(obs[m-1][n-1]==1)?0:1;
for(int j=n-2;j>=0;j--)
path[m-1][j]=(obs[m-1][j]==1)?0:path[m-1][j+1];
for(int i=m-2;i>=0;i--)
path[i][n-1]=(obs[i][n-1]==1)?0:path[i+1][n-1];
for(int i=m-2;i>=0;i--)
{
for(int j=n-2;j>=0;j--)
{
path[i][j]=(obs[i][j]==1)?0:path[i+1][j]+path[i][j+1];
}
}
return path[0][0];
}
}
No comments:
Post a Comment